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small-distwbsmce equation for flow at Mach number 1 is studied
objective of determiningg closed analytic solutions representing
fluid motions. Two fsmilies of exact solutions appear. The

first, which represents purely supersonic flow, is, in the two-dimensional
case, the transonic equivalent of the Prsmdtl-Meyer expansion and leads
naturally to s~le wave systems over two-dimensional surfaces. The com-

8 panion solution, in the case of rotatimal symmetry, yields a conical
field which coalesces onto the axis. A second family of subsonic solu-
tions is also calculated. In the case of rotational symnetry, a source-

W like flow with constant mass flux in the downstream hakF-plaue results.

It is possible to patch these solutions together in such a way as
to simulate the flow over the reer ha= of an infinite body. When initial
conditions on the body dictate sonic speed, expansion waves first appear
and accelerate the motion. An abrupt change
then produced by a single shock of parabolic

INTRODUCTION

to the subsonic regime is
shape.

This paper presents a few exact solutions of the transonic differen-
tial equation for the perturbation potential when the free-stresmldach
nudber is 1. Such examples, as in the case of Ringlebts solution (ref. 1)
of the more general potential equation, are of some interest if only by
virtue of their rarity, and one can hope that they may provide some
insight into the possibility of introducing further simplification in
the methods used to solve the basic nonltiear equation. The approach
used here is effectively a separation of variables technique with the
additional assumption that the perturbation potential times sane power
of lateral distance is a function of a single variable that is related
simply to lateral and longitudinal distance. Since no boundary conditi~s
are imposed> it beccmes relatively easy to generate solutions and one
finds that both two-dimensional and axially symmetric flow fields can be.
treated in the same manner.

d The solutions Yield, in all cases, either purely supersonic or purely
subsonic flow. The method of analysis, in fact, thwarts all attempts to
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attain a mixed type of solution except for the case in which initially
supersonic flow is joined by means of a sho& wave onto the downstream
portion of the subsonic solution. The details of the joining are given
in the final section on applications.
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*

o evaluated in the free stream
.

* evaluated at critical speed (M = 1)

ANALYSIS

In this section, analysis basic to the determination of the exact
solutions till be presented for two-dimensional smd axially symmetric
flow fields when the free-stream Mach number is 1. The derivation of
the transonic partial differential equation is first reviewed briefly.
Particular restrictions on the structure of the fields and the free-
stream Mach number then lead to consideration of sn ordinary differential
equation that is solvable analytically. The section concludes with a
discussion of the properties of the derived solutions.

Basic Equations

The flow to be studied is, by assumption, producedby slight devia-
tions in the uniform flow field created by a free stream of velocity Uo.
The uniform flow will be directed along the positive x axis of a
Cartesian coordinate system x,y,z and the perturbation velocity com-
ponents U,V,W, parallel respectively to the three coordinate axes~ are
assumed small relative to U. and the speed of sound a. in the stream.
For transonic flow, the free-stream Mach nmber (~ = Uo/ao) is near 1
and, in the derivation of the governing potential equation, the non-
linearity is retained only insofar as the stresmwise component of per-
turbation velocity affects the result. The continuity equation can thus
be approximated in the form

~ (Wpo) = oa (vPo)+az1 [(uo+u)p(uo+u, , *
ax

oo)]+— (1)

where p~uo+u,vjw ) is density expressed as a function of local velocity
andpo= P(UO,O,O) denotes free-stream conditions. The first term of
equation (1) represents the ~adient of mass flow and because of the
unidimensionality is easily evaluated by mems of the corresponding
momentum relation

lagUo+u=- pdu
4

(2)

where p is p(Uo+u,O,O) and p is local pressure. Equation (2),
together with the isentropic pressure-density relation p/p. = (p/po)y
yields
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where 7
equation

g= ‘+%m’~.(l+&y’’’/”-”{
is the ratio of specific heats. The
(2), determined by

J} (3)

mass flow is, thus, from

%),0 ‘(’+a$’+~2F-(’+*Ylr’(7-1) ‘k)
(UO+u)p

12

]+

and it remains to evaluate its stresm-
+U) wise gradient.

P
●

Ii
1,1

Sketch (a) shows a ‘plotof equa-
tion (4) when ~ = 0.8. As is tobe ‘“
expected, the maximum mass flow occurs

M,=O.8 when the local Mach number is 1. The *

portion of the curve in the neighbor-
hood of this maximum is the part
presently of interest. If equaticm (4) -
is approximated by an expansion

+ -,3 -.2 -.I O J
&

2 3 4 including only terms of first order
in u/Uo, the mass flow is repre-

Sketch (a)
sented by a straight line tangent to
the curve at the point u = 0, as

shown in the sketch. Equation (1) then assumes the form associated tith
linearized compressible-flawtheory. A moie exact approximation is sought
here, and to this end the qmdratic dependence on u/UO is retained.
The mass-flow curve is thus to be represented by a parabola of the form

.

(Uo+u)p

()

Uok u =
=1+(1-M02) *-T ~

UOPO
(5)

where k is a constant yet to be determined.

In equation (5) the ordinate and slope of the parabolic approximation
correspond to free-stream conditions but some arbitrariness remains in the
determination of k. The most obvious choice would appear to dictate
higher-order contact between the two curves, and this leads to the value

Uok =Mo2[3-(2-7)Mo2] (6)

A more interesting possibility follows if the vertex of the approximating
p~abola is fixed at M = 1, although the value of the mass flow itself
may not be exact there. This is the appr~ch usedby Oswatitsch (ref. 2) -
and leads to the result

.-
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Uok = ~. (1-%2)

a* -Uo
(7)

where a* is the critical speed of sound determined by M= (U. + u*)/a*= 10

A third possibility for the determination of k follows from the
known relation

a+—=
Uo

If equation (7) is combined
near ~ = 1, one gets

[

1+2 (1-M02) ‘2

(y-t-l)%’1 (8)

wtth the first-order expansion of equation (8)

u~ = (y+ 1)W2 (9)

Wheneqpation (~) is used, together with equation (1), and a pertur-
bation velocity potential o(x,y,z) is introduced, the transonic differ-
ential eqpation takes the form

.
0n(l-%2-kOx) +OD+OZZ = O

where k is givenby equation (6), (7), or (9).
u

Sketch (b) shows a comparison, at m = 1.2, of the three

Exact
1.0%

— Eq.(4) @#l

k specified in
MO

/—-
‘— Eq.(6) ,0- -- \

~. LOW
------ Eq.(7)
—-— Eq. (9)

,“ZH”---’%

,[/ \

L ~1 i 1 I I t I I 1

-.32 Y28 -.24 720 -.16 +2 -.08 -.04

(10)

wabolas

1
.04

&
Sketch (b)
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described above, as well as the more exact curve for mass flow given by the
tsentropic relation of equation (4). The differences between the curves
are of the same order of magriitudeas tho6e of terms neglected in tran-
sonic theory and the final choice must be based on a&litional considera-
tions. The form of k in equation (9) was yroposed originally by Spreiter
in reference 3, and its superiority in correlating experimental data by
means of the transo-nicsimilarity rules was clearly established at that
time. Its use will be adopted-here for this reason hnd also because, as
shown in the following paragraph, it appetis”as the most natural form to
relate the transonic shock-polar and mass-flow relations.

Equation (10) applies to transonic flow in regions for which the
flow experiences no discontinuities and the gradients of velocity b the
equation are finite. Transition through 5 s%ock wave is governedby a
finite-differencerelation between the components of perturbation velocity
(Ua,va,wa) ahead of the shock wave and the components (ub,vb,w) behfid
the shock wave. As given in reference ~ this equation is the transonic
shock pOti

where k in the final term is as defined

‘(=?-~)’ (11)

ti.eqmtion (9). Consider a
normal shock wave in the flow with velocity_ U. ahead and Uo+ub
behtid. Since the mass flow is continuous through the shock wave and
since in trensonic theory the continuous yo>tion of the flow is repre-
sented always as a potential field with uniform stresm conditions, it
follows that when ua>va,vb vanish, the’value of ub downstream of
the shock must correspond to unity on the mass-floy parabola. In
sketch (b), unit mass flow is represented by a horizontal line through
u= o. The intersection of the line and the parabola corresponding to
the k of equation.(g) is at

Ub * (1- M02)—=
U. (y+ 1)W2

and this agrees with the value of ub givenby equation (11). This
result can, in fact, be generalized.easily to show that for any normal
shock the discontinuity predicted by the shock polar agrees with the
discontinuity given by equation (5) when the mass flow is held fixed.

.

“

d

w

.

—

.



NACA TN 3868

A caqyarison between the tran- Moml.l
sonic shock polar of equation (U) — EXOCt
and the exact polar is shown in

----~(t}) --------
,-

sketch (c) for the case ~ = 1.1.
,0

/#’
The inner curves apply to shock 1’
discontinuities for which free- ff
stream conditions hold on the :
upstream face; the two polars are :

thus applicable, in particular, to ::
bow waves in a supersonic free

L
-.20 -.16 -.12 -.m -04 0 m

stresm. It is theoretically pos- 8
sible to treat shocks at positions
for which the supersonic free stream Sketch (c)
has been accelerated to a higher Mach
number associated with the longitudinal perturbation velocity W. The
outer curves of the sketch are drawn for the case ~ =1.1 and~/Uo=O.Ok.
It is obvious that US./Uo must, h general, be kept very small if the
shock analysis is to be based on free-stresm conditions.

From eqpatfon (11) the maximum deflection angle accczmnodatedby the
shock wave csm be shown to be

3/2
_ 4 (~a2-1)

3 m %2(7+1)
(12)

where ~ is the Mach number on the upstream face of the shock. It
is clear from an inspection of the curves in sketch (c) that this result
provides excellent agreement with exact theory when ~ = ~ but becomes
less accurate as the difference between the Mach numbers increases.

Particular Solutions When & = 1

Subsequent application will be limited to cases where the flow field
is either two-dimensional or has axial symmetry. The differential rela-
tion for the perturbation potential is, from equation (10),

(13)

where 6 = O for two-dimensional flow and a = 1 for sxially symmetric
flow and’ y is a Cartesian coordinate in the two-dimensional case and
the radial coordinate in the case of axial symmetry. When the free-
stresm Mach number is 1, all values of k reduce to
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.

and by means of the transformation
!’

o = Uoq

the differential equation becomes .

(14)

Following Guderley
the form ..

and Yoshihara (ref. 4) a solution is sought of
.— ._

(15)

If the resulting ordinary differential equation is to involve only T

and f(T), the cOndi%iOn m + 3n = 2 must apply. The perturbation velocity
components then become

T
Qx=— f’(r)q2-3n (16a)

[

(2-3d f(T)+-til(.)]
‘Y =-— (16b)

~3(l-n)

The ordinary differential equation for f(T) can nowbe written as

ftftt= [3(1- n)-al(2- 3n)f+[5n(l-n) -na]fl’+n%zf” (lTa)

This is a homogeneous differential equation, of degree of homogeneity 3,
so its order may be reduced by unity (see ref. ~, par. 55). An alternate
approach is possible, huwever, since the parbmeter n is yet to be fixed.

Rewrite eqpation (lTa) as

[2(1 -n)(3-7n) +*2+26(%- l)lf (l’p)

A first integral of this equation can be written immediately if n is
chosen so as to make the coefficient of f vaaish. Solution of the

resulting quadratic equation in n yields the roots

.—

.
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9

1n=-, y
2

For the two-dimensional case, this results in two possible values for n,
namely 1/2 and 3/k; but for the axisymmetric case, where a = 1, the
roots coalesce at n = l/2. The first integral of equation (in) is

f,2 . ~2& (72f)+2n(5 - gn - a)ti+const

In order to deal with situations in which the flow is undisturbed
for x <O, the condition that the stresmwise perturbation velocity com-
ponent qx vanish at x = O willbe applied. From equation (16a), this
implies that f’(0) = O also and the value of the constszrtin the last
equation becomes zero. The resulting form for the first integal of
equation (17a) is therefore

.

f!2-~2~2ft - 2n(5-Yn-d)ti=O (18)

.
It will be noted that equation (18) is again hmnogeneous, and thus can
be integrated. It remains then to consider separately the three possible
cases (a = O; n = 1/2, 3/4 sad a = 1; n = 1/2) and to examine the form
snd properties of the relevant solutions of equation (18).

Properties of the Particular Solutions

tion

Two-dimensional case, n = l/2.- Setting a = 0, n = l/2 in equa-

(18), one needs to solve the equation

2f’2-T2f’ - 3Tf = O (19)

and this is readily carried out by I?Iesnsof the substitution given in
reference ~. First, however, consider the equation written in the form

4

It canbe seen that f(r) must
is positive. The ambiguity of
the upper sign is chosen, f~ >

(.= *’JTm%) (20)

be an odd function of T, positive when T .
sign then leads to two possibilities: if
O, and the choice of the lower sign leads

. to f~<o.- By reference to equation (16a), it follows that these pos-
sibilities lead respectively to the conclusion that qx >0 or qx < 0,

* hence to purely supersonic or purely subsonic perturbation fields, since
the stream velocity is sonic. These possibilities willbe distinguished
with respect to f by designating them respectively as fl and f2.
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The solutions of eqmtion (19) are e~ressible in the form .

f 10
2/s

fL(T) = ~ T3+—
(++24f1)u2+3T3’2

2(3)ds [(
1/2 3/2 ~i3

T3+ z?4.fl) + T 1

(’f’+ 24f2) ‘/2+ # 2
f~( T) = 2kfao2

[( 1l/2 3/2 3
T3 + ahf2) + 3T

(21.a)

(tib)

where the additional.subscript o means that the function in question is
evaluated at T = 0. A particularly interesting solution of supersonic
type results when f=o = 0, nsmely

f~(T) =* Ts (22) ‘

.

Physical aspects of the flow field determinedly this solution will be
considered later. Supersonic-we Bolutions givenby eqpation (21a) that
do not have the property flo = O will not tieconsidered further here.

It is apparent, however, that they behave asymptotically like (1/3) ~,
the solution to be used.

Consider, next, the solution (21b) which is of Wbsonic type, f2t < 0.
The formulation, as given, is implicit but it is not difficult to com-
pute the course of f=(7) because of the following relation, a consequence

of the homogeneity. Let c1= 21fa(T)/’r3;then eqUatiOn (21b) can be
written

Lo
‘F= f202 z (1+6)’’2+1

[ 1
e (l+e)’’2+3 g

.8-
(2s)

.6- so that if values of @ are assi~ed,
T may be computed end hence f2, since

.4
f2(T) =3

.2

Sketch (d) shows the behavior of
f2(T) for the initial Value fao = 1.

4SBecause of the homogeneity Of f(r)

.

w

Sketch (d)
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.

in 7, it is only necessary to compute .f=(T) for one initial value fzo;

other cases then follow from the transformations T=CT*, fa(7)=Csfz*(7*).

For later analysis, it is convenient to have simple expressions for
the behavior of f2(T) for small and for large values of.the argument T.
Such
ti.on

h.

expressions are readily calculated by use of the defining equa-
(19). The required formula for small and large T are, respectively,

()f2(T) = fao- $f=o ‘i242+~ +- “1 -JJ~

()

Ts/2+. . .

72 ; fao

(24a)

f,(T) ‘; f,.= ~-~ f,04 ~+. . . (24b)

Two-dimensional case, n = 3/4.-

. by g(T) in order to distinguish the
n = 1/2. The defining equation

Solving for gt, it follows that

is

The function f(T) is now replaced

present functions from those for

9+g’-+3Tg = O (25a)

(25b)

Thus g(T) must be negative, or such that

The solutions associated with the two signs in equation (25b) will again
be disttiguished by the subscripts
and negative signs, respectively.

81(7) = ~ @ - (96g,os)U7

1 and 2, corresponding to the positive
These solutions are

(BlT3-96glT)d2 +7TS12

[(

9/7 (26a)

81@- 96Tgl)u2 +9Ts/21
8 I/s

() (81TS - 96Tgz) ~i 2 + 9T3i2 .
gp(T) =- -

96
[(81’”- 96Tg2) ‘2> 7T3/2]7/g

(26b)
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o~
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-4-

-.8-

-1.2 -

-1.6 -

-2.0-

-2.4-
Sketch (e)

It is of interest to remark
that the supersonic-type solution
for which glo = O coincides with

that found in the previous case.
The solution of subsonic type is
shown in sketch (e); it does not
vanish for large T as aid fJT]
but, in fact, grows as T1lSO
Approximate formulas for small and
large 7 sre again easy to find,
being

(27a)

.

.

()
d 9

.-~ g~08 ()
* 2/9

$2( T)
Td ~ - ~ ’20

& +.. . (27b)
4 192 ~~ 192

—

Axisymmetric case.- For this case the-.~ctional symbol F(T) is
used to replace f(’r]. The defining differential equ&tiOn is—. —.

~12-~1-TF=0 (28)

which can be rewritten &s

112
(29) ‘-1 +*(TA+87F)Fl=_

4 [ 1
Solutions of equ@ion (29) are

—

() 4 ‘i= 3(%+8F1)1’2+5#2
.

F=(T) =~TS+~ ~

[(Ti+ 8#=+ T3/2]3’5

(30a)

.
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again a simple, supersonie-
sohrkion results when Flo = O,

The subsonic
lated by the

F1=$T3 (31)

solution can be calcu-
same device used pre-

viously and has the form sham in
sketch (f). Expansions for small as
well as large values of ~ are

13

(30b)

1.2
r

.8-

.4“

Sketch (f)

()
112

z! F20

()

lf2
F2(T) s F=O-3 ~ +/2+3%Q_ L #2+e ● .

432 F20
(32a)

(32b)

The formal similarity between the two- and three-tiensional cases
is particularly striking for the Ample, supersonic-type solutions since
they differ only In the magnitude of the coefficient of ~. It will be
seen in the next section, however, that the two-dimensional solution is
of more general interest since it is directly related to the study of
expansion waves in transonic flaw.

SPECIX APPLICATIONS

In this section streamlines and pressures associated with the derived
solutions will be studied in some detail. In all cases the flow in the
negative half-plane (x < O) w%ll be assumed uniform with paallel stream-
lines. The disturbance fields then produce deviations in slope of the
streamlines in the positive half-plane (x > O) and the flow can thus be
identified with modifications in shape on the rem of a semi-infinite
cylinder or airfoil.
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Two-Dimensional Flow

.

.

E@ersonic-typ e solution.- Consider first the supersonic solution
determined by the function f=(T) given h equation (22): f~(T) = T3/3.
As mentioned previously, this solution holds when f= = 0, for either
n= L/2orn= ?3/~. According to equations (15) and 16), the pertmba-
tion potential and velocity components are ““

Cp(x,y) =+
@ : 1 X3

3Y (Uoko)y”” ‘3(7+1)F
(Ssa) ““’

2

()

3

qx(%Y) =— .
(7:1) J ‘

O?Y(X,Y)= -2
()3(7+1) ;

(33b)

Consistent with the approximationsmade in establishing
the slope of the streamlines is givenby

!W=VY
dx

and, after integration, this yields

y%~ X4
3(7+1)

where yfl is the starting value Of y.

= Y~4

equation (10),

(34)

.

The flow therefore expands as

(35) ‘--

it bec&n~s supersonic. The solution given in equations (33) is clearly
of the sort called “simple wave’!since it lies adjacent to an undisturbed
region. The characteristicsof the field Zhould then consist of at least
one set of straight lines, and this is seen–to be the case; for, frmn
equation (14) with a = 0, the slopes of the families of characteristics
are

g= *1
[(7+ l)qxr/2

and, using equation (33b),

Q&=*$

The characteristics are then

(36)

(37) ●

v
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yjx = const , KY = const (38)

and the first of these families is the required set of straight ‘lines.

The best lumwn simple wave solution is that of the Prandtl-Meyer
expansion and, in fact, the present solution is the transonic approxi-
mation to this exact solution, applying for small angles of flow deflec-
tion. The accompanying sketch (g) shows a comparison of the two flows
as to streamlines and second-family characteristics (the first-family
characteristics are identical, being radial lines from the origin.)

I
M#l

I

I I

I
1

I
1-——— —— — —— — ——

Sketch (g)

The solid ties are the exact results and the dashed lines represent the
present approxhation. Roughly speaking, agreement is good up to a fan
angle of about 45°, corresponding to a deflection, or expansion, through
about 6°. Another comparison that can be made is that of the pressure
coefficiats in the two solutions. The exact result is (for ~ = 1)

Cp=+-+) (39)

where 7 is the ratio of specific heats, 32 = (7-1)/(7+1) and
tanm= x/y so that u is the polsr angle measured from the y axis.
For small angles of deflection a, it is easily found that the relation
between a and u is
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.

If theright side of
and the lowest-order

a

equation (39) is eqmnded
term retained, one gets

for small values of u

.

In terms of a, the last relation yields forpressure coefficient

%’
+3(18)1/3

(y+l)~’
(40)

In the present transonic small-perturbationtheory, pressure coefficient
is +. .

The deflection, a, of the flow is
s’”

2

()

2
a= -qY =

3(7+1) $ ‘—
@l

3(7 +1)

and these last two relations lead directly to the approximation for
Prandtl-Meyer flow given in equation (~). This expression is, moreove~j
in accordance at MO = 1 with the transonic similarity rule for pressure

t

coefficient as given, for example,
in reference 3.

Y

4

.

The nature of the Prandtl-Meyer
relation between pressure and local
flow deflection leads naturally to
application to two-dimensional expem-
sion over a curved airfoil surface
for erbitrery free-stream Mach numbers.
The problem resolves itself into the
determination, frcm a knowledge of the

—

expsnsi,onfsm for ~ = 1, of a rela-
tion for pressure coefficient; analo-

(LJ gous to eqpation (~), for the case
in which a flow at a Mach nwiber M. 4

is turned through a small angle. To
~ determine such a formula, one stsxts
with the previous solution smd follows .
it until the Mach number in the expan-
sion becomes ~, at some angle M,

Sketch (h) as shown in sketch (h). The velocity
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.

is constant all along the ray at angle w to the y axis, and the
direction of the flow is parallel to the ray at angle ~ to the x.
axis. Introduce now a new potential function $(x,y) definedby

(%2- 1)X , ql
Iy(x,y)= -

(7+ l)%’ M02
(41)

This function satisfies the transonic equation (13) for two-dimensional
flow at free-stresm Mach number ~, and so applies to the flow in the
present problem as it exists after turning through the angle ao. The
boundary conditions are

$x =

●

In general.,the stresmwi.se

(@ - (%2 -1)

(7+ 1)%2
at ~

the present approximation, one has

‘lx=0 at (A)O

component of perturbation velocity is

~2

‘#X =
- Ldoa

(7+ 1)%2

The deflection angle is

*Y==-%=
3(7+0 %

and the initial boundary condition yields

-(aO+a]

I
-24)0=

=Ify =
= -2(h&-1)=’2

a.
LLl=tdo

Thus the incremental pressure
from ~ to ao+a is

3(Y+0M02 3(7+ ~)Mo2

coefficient attributable to the deflection

●
c-p = -Z3Jrx * (%2-1) (J2

()
1

= (y+l)~’ ‘P

● or, if the relation between (AIand a is used,
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(l&l’ -1)
{[

1-
T}

~+ 3(7+ 0%2 ~ ‘3 (4!2)
2(M02 - 1)3/2

% ‘2 (7+=)%2

.

.

Equation (42) is consistent with the transonic similarity rule for

pressure coefficient when k = (7+ 1)~2/Uo is the basic trsmsonic pram-
eter. It is of interest to remark that the &tie problem has been treated
by Lighthill in his discussion of simple wave theory of airfoil flow
(ref. 6, p. 387’). His result, which was derived as a simmation of series
representations for pressure coefficient ~ %er&s of flow deflection angle,
vaB

--
.. ——.-

CP=2
(M02-1)

(7+1) @~-*.~’=} (43)

Here, m is of opposite sign thau that used in equation (42). It is clear
that equation (43) is in a form consistent @th the transonic similarity
rules based upon the value (7+1)/U. of the transonic parsmeter k. .

Subsonic-type solutions.- Consider the two-tiensional solution for ““ <.
the case n = l/2, The differential eq~tion defining the streamlines
of the field is .

.—- —~

S& =TY=* [f JT)+Tf2’ (T)] (44a)

This equation must be solved numerically and for the reason of avoiding
continual conversion between x, y, and T, it 5s convenient to change the
independent variable from x to T. This gives

!g=-* f~+tiat
(44b)

4(u&-J)‘1’9~+T(fz+Tfz’)

L

1!
A plot of the quantity (f2+Tf ~)

.8
versus ?T is shown in sketch i).
The quantity vanishes at one value

.6 of r, say Tl, and this iB easfly

ft+rf; found to be at the point where
f2(TJ = Tlg (by USing eq.4 (20) for
f=t in terms of f=) or, using
equation (21b), where

9 f=ozTle =—32

.=

.

.

Sketch (i)

t
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Thus, the streamlines have a stationary point at the zero of f2+.f3
. and, in the x,y plane, a constant value of T becomes a para%ola

Sketch (j) shows some results of integrating equation (kkb), and
retransforming the independent variable from T to x, as well as the parab-
ola on which the mintium points of the streamlines ue. In addition one
can derive various other relations for the streamlines as appromtions.

2.0~ ----
./’
/t .----

16-
!t

—...
.

-.--.

.
Y

----

.8-

/

.4- /’
#,/”

1---
0--

#-
I t 1 I m I I 1 1

‘o .4 .8 12 1.6 2.0 ~ 2.4 2.0 3.2 3.6 4.0

Sketch (j)

For example, for very small values of T (or x), one can
term only of the series (24a) for fz(.), and derive the
of the curves. This gives

use the first
starting form

where

Yo = y(o)

On the other hand, to determine the asymptotic form of the streamlines,.,
the first term of the series (24b) can be used together with equation (kka).
Thus

. 3 (Uok.o) ~202 1
Ym-Y=—

8 .3
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where ya 5.sthe Wtimate height of the ptr~amline. In this particular
example, the streamlines ap~roach their asymptotes from below. Finally,
for large starting values of tihestreamli”nes~y. >> 1, a control surface
method would be applicable for the calculation, since the variation dies
out rapidly with &reas@g yo, and the 8tr—=ines are nearly straight.._

.

It remains to calculate the pressure distribution along a streamline -
in the flow. The expression for pressur~ coefficient is given explicitly
as .

Cp = -@x=
-2 f’t(T)

(Uoko)1’‘y
(45)

L6L

Sketch (k)

The results of the numerical solu-
tion of.the differential eqm-
tion (llb) for the streamlines are ..-
useful for this pressure calculatim,
since therein y is known as a
function of T. Results for the

.

streamlines having y = 1, based
7on the function f2(T for which *

f~~ = 1, are shown in sketch (k).
It is not difficult to determine
that near x = O,

so that the pressure gradient is infinite at the y axis, on every
streamline. This effect is attributable to the finite deflection angle
on each streamline at x = O. —..

The other two-tiensional. solutimy (n = 3/4) can be discussed in
much the same way as for the preceding case (n = 1/2). The differential
equation for the streamlines is

——

.

Again, the independent variable can be changed from x to T, resulting
in

g=+
ga’=(d

2(uoko)-1’3y+&’2(T)
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Results for numerical solution of 2-0
this eqyation, for several initial
values of the lateral coordinate
yo, ae indicated in sketch (Z).

-----
1.6-

The initial value of ga(T) was -—-

g2* = -1. It is noticed that there
are no stationary points on these
streamlines, but the corner at
x = o persists. Pressure on the y
streamline for which y. = 1 is .0-
shown in sketch (m), and the singu-
larity in the pressure gradient at
x= o still exists. .4-

Coml)inationof subsonic and
supersonic solutions.- It is of I 1 , # (
interest to consider the possibility 00 la 20 3.0 4.0 5.0..
of combining the previous solutions- X

through the mechanism of a shock Sketch (1)
wave. Thus, consider again the
undisturbed sonic flow in the half- ~o .5 10 15 X2.0 2.5
plane x <O, and let It expand to

~

become supersonic for x ~ O. If
this supersonic flow is followed for .4.
some small distance, it can be shown
that a shock wave of determined %

strength can be specified in such a .8-
way that the downstream field corre-
sponds to lmowm results. Assume now Sketch (m)

that the simple-wave, supersonic solution is to be followed by the sub-
sonic solution for the case n = 1/2. The discontinuities in the flow
must satisfy the two-dimensional form of the shock-wave relation given
in equation (11). Since
form

& = 1, the condition can be written in the

(v-) =‘u&)-(’’=%)2
In terms of the auxiliary
becomes

functions f=(r) and f2(T), eqyation (n-6)

(f~- f=+%e=’ - Tf*’)2- 2( f=’ +f~’) (f=’ - f2’)2 = o

which factors to give

(46)

(f=-fa)(f~-ti~’- f2+Tf~’) = o
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The shock-wave relation is thus satisfied if

fI(T) = f2(T) , (47)

(The othed factor cannot vanish since f ~ - =1’ is a negative qwntity
and f2-ti2? is always positive.) Since equation (47) will hold for
some fixed value of T, Bay Ts, it is clear that the shock wave in the
physical plane must have a parabolic shape, with the equation

X%=

Further, it is not difficult to
equation (21b), that

(w%) 213Ts% (48)

determine, by setting f2(7) =~3/3 in

In order to see if
sufficient for the

()
l/6

?.s= ; fao=

the condition represented by equation
-“istence of a shock wave. velocities

(49)
.

(47) is indeed
can be calculated .

on both sides of the wrabola of emation (~) in directions tangent to
—

and normal to the parabola. One t~en finds that the tangential &mponents
are continuous across the parabola and that the normal components fulfill.,
to the order of trsnsonic small-perturbation theory, the c“ondttion

where Va and Vt represent components of the total fluid velocity normal
and tangential to the shock wave, respectively, and the subscripts a

Sketch (n)

-d b refer,to conditions immediately
upstresm snd downstream of the shock
wave.

A final condition to be met, if
the joining of the two flow fields
by a shockwave is to be meaning~,
is that the shock wave be attached
to the wall. ~pation (lZ!) gives an
expression for the shock-attachment
sngle k, and sketch (n) shows a
comparison of the exact values of
%x as derived from oblique-shock-
wave theory with the approximate .
values given by equation (12) with
b = 1 as a function of the local
Mach number just ahead of the shock -
wave, ~. This sketch re-emphasizes
the necessity for conffning the
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application of this perturbation analysis, where shock conditions are
referred to free-stream quantities, to very small.values of the perturbed

. quantities. Now, to insure that deflection angles obtained inmskcbing
the supersorxicad subsonic flow fields are admissible, it is necessary
to determine the angle at which streulines o~both parts intersect at
the shockwave. If A is the angle of inclination of a streamline, its
slope is

me discontinuity across the shock wave at any point thereof is then,
making use of eqpation (20) and the shock condition (47),

tan(xb-ha) = -+--
~+

4y3 2 ~ Ts=-—
18y3

= (3=’ 2/2) (f2Jy%

l-(2f202/27y~)
(~o)

Hotice that the deflection decreases with the 3/2 power of distance from
the x axis. The angle determined by equation (50) is to be compared
with k, using as the local Mach nmnber in eqpation (12), or in

sketch (n), that attained at the end of the supersonic portion of the
desired combined streamline. The local Mach number M is determined
from the transonic relation

I-M= s l-~2-(U&)qx (51)

which approximates the coefficient (1-M2) of Q= in the exact potential
equation by the coefficient of (pn in equation (13) (where Uoq = 0).

The calculation of an illustrative example is most easiw csrried
out by starting first with one of the subsonic streamlines already cal-
culated and matching to it, at the point of intersection with the shock
wave, a supersonic streamline. The latter is readily determined from
the differential equation (34) when one uses as the boundary condition the
values of x,y obtained from the intersection of the wave and the
subsonic streamline.-

In order not to -end the supersonic flow to angles of deflection
that exceed the range of validity of the theory, it is necessary to.
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choose f20 pro~erly. The results of
are shown in sketch .(o). The subsonic

J14cATN 3868 —. ..
.

cal~ulations for which f20 = 1/8
strean@ine was taken as the one. i

L12- ~ w

----

1.04 -----

Y

.96 -

.88 -

.800 I 1 I I I t 1 1 1 I

.2 .4 .6 .8 1.0 ~ 1.2 14 16 1.8 2,0

Sketch (o)

for which y. = 1. The shock wave is a portion of the parabola

X2= (Uoko)2’3T&

which becomes, after evaluating T~ from equation (49),

x= = 0.43Y

From equation (~0), the calculation to determine change in deflection
angle at the shock wave is ,asfollows

tan(~b - ha) = 0.111 , hb- & = 6.3°

In order to calculqte the local Mach numb=.. M

T

at the end of the expan-
sion region of this flow, we use the relation 51] whichy for ~ = 1,
gives —

Ma= [1+ (,+ UCP=]”2

.

—
—

-.

—

and, from equation (33b),

%= F+G9T’2
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With the value of ~ thus determined, sketch (n) can be entered,
it is found that the angle Ab -& just determined lies above the
attachment Mmit, so that the shock wave is attached to the wall.

25

s.md
shock-

In connection with the wall.shape and shockwave of sketch (o), it
should be mentioned that the analysis leads to the so-called “strong
shock’tand that it is not possible, in this two-dimensional case, to
derive a shape characterizedby a %eak shock.” This result cmbe found
by a consideration of the perturbation shock relation (11). The region
of the shock polar that lies between the value of qxb corresponding to

maximum deflection angle and cp
%

= O corresponds to the weak shock

region. It is easy to determine that in this region

NOW, using equation (16), it can be shown that this condition corresponds,
in terms of the variable T, tO

where TS is given in equation (49). The parabola in the xy plane for

which q% a-(~%/3) therefore ~es outside the shock-wave p%bola
determined by Ts. Thus, the weak-shock condition can never be achieved
in this case.

On the supersonic portion of the streamline just illustrated, pressure
coefficient is, from equation (33b)

2

0
%! =-%=-+ ;

where y is the height of the stresmli.ne,y = y(x). If the point where
the shock wave intersects the streamline is denoted (x~,ys), pressure
coefficient on the upstresm side is

%=-=-
X2

7+1

[
ysb+ 1’3(711) ~s4- x4) 12

(52)
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-.5

-$

-.3

%

-.2

-.1

0

.1

.2

1..

,
.4 .8 ~ u!

Sketch (p)

Axially

In the subsonic portion
calculation of pressure
simple, but is given by

NACATN 3868

of the field,
is not so

where y = y(x) is the calculated
height of the subsonic streamline.
Results of the pressme calculations
on the wall shown in sketch (o) are
given ti~ketch (p).

It is not possible to combine so
directly the subsonic and supersonic
flowswhen the other two-dimensional
solution, g(T), is to be used. The
reason is that since the condition
for a shock wave is again gl = gz,
the simple supersonic-type solution
gl = T3/3 is not applicable since
the subsonic solution g2 is alW2yS
negative and no intersection occurs.
Further application of these results
would involve detailed examination of
the more general supersonic solution
givenby equation (26a).

Symmetric Flow

Supersonic solution.- A single solution exists in the axially sym-
metric case. corresponding to the value 1/2 for the index n. There are,,
of course, still the solutions of superso~ic type and of subsonic type,
as given in equations (30) and (31). A simple supersonic solution exists
again, namely, from eqyation (31)

The corresponding

T

Qx

potential

F=(T) =~~

and velocity functions are

IF
‘~ 1(T) , v&$

2

0

4
3

= 3(u2&) $ ‘ ()
Qy=-9(u*) $ (53)

.

.
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.

so that certain aspects of this flow are similar to those in the two-
dimensional supersonic case previously considered. A definite difference

●

does exist, however, in the fact that the two-dimensional streamlines
could be carried to the limit as y approaches zero ~d resulting in
this case in a Prandtl-Meyer corner flow. This limiting process fails
three-dimensionally since the flow turns inward on itself. Finite values
of streamline radius are therefore required and the flow must be modified
downstream by a shock wave and a readjustment of the streamlines.

Subsonic solution.- The subsonic solution for the axially symmetric
transonic problem depends on the function F2(T) defined in equation (30b)
and shown in sketch (f). %resmlines corresponding to this case can
again be calculated by solving the differential equation

S&.
&x

---& [F2(T)+ TF2’(T)]

By means of the differential equation (28), this can be written*

g
.

Again, it is convenient to
independent variables from
and the resulting equation

(54a)

!g=.~ F2:2(T)
‘“6- ~___

2(Uo~)-’’Sy%F2(2r)r) 1.2 ---

(Skb) y \

.

In this case, there are no station-
ary points on the streamlines. A
few results of calculations are
shown in sketch (q) (where F20
has been taken equal to 1). These
stresnilines approach their asymp-
totic height from above, as in the
two-dimensional case with n = 3/4,
rather than frcm below, as in the
two-dimensional case with n = 1/2.
Pressure calculations proceed as
previously, the formula being

%=- ~ F2’(T)
(7+ I)”’y

.
In sketch (r), the pressure on the
streamline for which y. = 1 is
shown.

Oo-w
~ 3.0.

Sketch (q)

~o .5 ISI 1.5x 20 2.5 3P

.4-
Cp

.8-

121
Sketch (r)
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.

Combined supersonic and subsonic solutions.- For the axially sym-
metric yrobkm it is again possible to use the simplest supersonic
furiction F1(T\=(2/9)~ inconj~ctionwithth esubsonicsolution

&

F2(T), as given by eqwtion (30b), to produce a flow inwhfch a shock
wave is
axially

iribedded. The condition for existen~> of a shockwave in the ._ .
symmetric case is,from eqyation (11)

where y now denotes the
fumction F(-r),this last

radial coordinate.. In terms of the auxiliary
condition can ~e mitten .-

(F=- F2)(Fl’2- F2’2) = o (55)

.

Again it can be shown that the first of these factors leads to a proper
relation of tangential and normal velocities across the shock wave. while
the second does-
F=(T) and F2(T)
this OCC~S iS

not. The condition is, ~herefore, that the functi&s ?

be equal at the shock wave. “The value of T at which
—

()
tis

~s4 = ~ 9F204

3 100
(56a)

and the shockwave. is then given in the physical plane by

.2= [(uoko)l’’%~Y (56b)

‘loillustrate the sort of
streamline (stibsonic)for
Fzo = 1/8. The procedure

body that one ge~s in this case, consider a
which y. = 1.2, and computed on the basis
is the ssme as it was previously,”nsmely to

d&ermine the intersection, say (xs,ys), of this stre.smline with the
parabola (eq. (56b)) representing the shock-wave, and to use this point
as a boundary condition for determining the proper solution to the
s~ersonlc streamline differential equatim

..

()$$=J_ _’
9(u&J .; (57) -

.
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1.36

1.28-

Y

1.20

L12& # , # # I I 1 1 f I
.2 4 .6 .6 m 1.2 14 1.6 1.6 2.0

x

Sketch (s)

The result of such a calculation, with the “parameters y. and F20 taken
as mentioned, gives the figure shown in sketch (s). me angle between
streamlines on the two sides of the shock wave is, in this case

A~-A~ =5.7°

In this axially symmetric case one gets
Mo=l,

2

%2
()

=1+2 ~
3 Ys

and calculation of & shows that the shock

by using equation (~1) with

wave is attached ih this
case. In contrast to--the two-dimensional case treated above, it is found
that in the present axially symmetric case it is necesssry that the shock
wave be of the weak fsmily, because the critical parabola is determined by

where T~ is given in equation (56), ‘“3
and therefore lies inside the shock
wave. Since in both the two-
dimensional case and the present -.2

one, the line of demarcation between%
strong and weak BhOCkSis distinct
from the shock wave itself, one -.1

cannot determine configurations
having shock waves tha~ are right
at the point of detachment. o #

.4 .8

The pressure coefficient on the
streamlines of sketch (s) is shown .11 7

. .
in sketch (t). Sketch (t)
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Mass-flaw property of subsonic solution with axial symmetry.- All
of the solutions given here were derived by means of formal manipulation
of the transonic differential equation but in ‘thecase of the su~ersonic
solutions f~(T) = T3/3y gl(T) = T3/3, smdFl(T) = (2/9)# it was easy
to identify these results with simple exptisions from uniform stresm
conditions. It is evident that the latter solutions could have been
derived fr~ any one of several methods of attack since their existence
and nature are intuitively so obvious. The subsonic solutions, on the
other hand, are somewhat more cOm@ex and.appear to arise rather arti-
ficially as a result of abrupt deflections imposed on the streamlines
across the entire plane of flow. In the case of axial symmetry, however,
the mibsoni.c solution has properties reminiscent of the fundamental SOIU-
tion iden.tified with the source-shk potenti.~1 of linearized supersonic
theory. From equations (15) and (16) the pej%mbation potential and
velocity components can be rewritten as .

F=’(T)
u= 9X =

y(7+l)1’s

From equations (32), limiting

For r <<1

la
; v= Py=-—— 2ys/~ dT ~TF2(T)]

conditions yield:

(58)

(59)

()F20
1/2

()

ti2~L/2 .1 F20 ~112

‘=-(7+:)’” y ~+” ● “=-- ~
—+ . . .
y314

‘=$’=+”“ ●

For T >>1

u“- ~ (9F204)1’3 7$+ ● ● ● =-~ (9F204)1’3* +...

lt 3s apparent that the origin is an essential singularity of the
flow field, the rate of growth of the velocity components being determined
in part by the particular psrabola T = cofist along which one approaches
the origin. Away from the origin and on the lateral axis u is zero and

-.
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v is finite but attenuating (as l/y3’2) with distance. On the longi-
tudinal axis v is zero and u is finite but attenuating (as l/~)
wtth distsnce. The flow thus appears ‘coflow into the origin and to
distort the field in the portion of the plane downstream of the Mach
Une at x = O.

It remains to calculate the rate of mass flow that is associated
with the solution; if this rate is constant, the analo~ with the source
is more closely established. To this end, consider a cylinder of fixed
radius Y and extending frcxnthe plane x = O to x = m. The rate of
flow is then given by the integral

.

Since d(x/YU2) = (y+l) ‘sdT, the integration is direct and yields

R =-2SCPO(7+1) ‘3 lim ZF=(Z) =-~
2+m

~ fiPo(7+N3(9F204)1’3

The rate of mass flow is therefore a negative constant independent
of Y and the solution behaves microscopically like a sink. As seen in
sketch (q), the streamlines of the field are dram toward the longitudinal
sxis, consistent tith this concept.

Ames Aeronautical Laboratory
National Advisory Cortauitteefor Aeronautics

Moffett Field, Cal_if.,Aug. 16, 1956
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